Abstract:Large Language Models (LLMs) have demonstrated strong potential for generative recommendation by leveraging rich semantic knowledge. However, existing LLM-based recommender systems struggle to effectively incorporate collaborative filtering (CF) signals, due to a fundamental mismatch between item-level preference modeling in CF and token-level next-token prediction (NTP) optimization in LLMs. Prior approaches typically treat CF as contextual hints or representation bias, and resort to multi-stage training to reduce behavioral semantic space discrepancies, leaving CF unable to explicitly regulate LLM generation. In this work, we propose Token-level Collaborative Alignment for Recommendation (TCA4Rec), a model-agnostic and plug-and-play framework that establishes an explicit optimization-level interface between CF supervision and LLM generation. TCA4Rec consists of (i) Collaborative Tokenizer, which projects raw item-level CF logits into token-level distributions aligned with the LLM token space, and (ii) Soft Label Alignment, which integrates these CF-informed distributions with one-hot supervision to optimize a soft NTP objective. This design preserves the generative nature of LLM training while enabling collaborative alignment with essential user preference of CF models. We highlight TCA4Rec is compatible with arbitrary traditional CF models and generalizes across a wide range of decoder-based LLM recommender architectures. Moreover, it provides an explicit mechanism to balance behavioral alignment and semantic fluency, yielding generative recommendations that are both accurate and controllable. Extensive experiments demonstrate that TCA4Rec consistently improves recommendation performance across a broad spectrum of CF models and LLM-based recommender systems.
Abstract:Optimizing data mixtures is essential for unlocking the full potential of large language models (LLMs), yet identifying the optimal composition remains computationally prohibitive due to reliance on heuristic trials or expensive proxy training. To address this, we introduce \textbf{MergeMix}, a novel approach that efficiently determines optimal data mixing ratios by repurposing model merging weights as a high-fidelity, low-cost performance proxy. By training domain-specific experts on minimal tokens and optimizing their merging weights against downstream benchmarks, MergeMix effectively optimizes the performance of data mixtures without incurring the cost of full-scale training. Extensive experiments on models with 8B and 16B parameters validate that MergeMix achieves performance comparable to or surpassing exhaustive manual tuning while drastically reducing search costs. Furthermore, MergeMix exhibits high rank consistency (Spearman $ρ> 0.9$) and strong cross-scale transferability, offering a scalable, automated solution for data mixture optimization.
Abstract:Sarcasm detection remains a significant challenge due to its reliance on nuanced contextual understanding, world knowledge, and multi-faceted linguistic cues that vary substantially across different sarcastic expressions. Existing approaches, from fine-tuned transformers to large language models, apply a uniform reasoning strategy to all inputs, struggling to address the diverse analytical demands of sarcasm. These demands range from modeling contextual expectation violations to requiring external knowledge grounding or recognizing specific rhetorical patterns. To address this limitation, we introduce RAM-SD, a Retrieval-Augmented Multi-Agent framework for Sarcasm Detection. The framework operates through four stages: (1) contextual retrieval grounds the query in both sarcastic and non-sarcastic exemplars; (2) a meta-planner classifies the sarcasm type and selects an optimal reasoning plan from a predefined set; (3) an ensemble of specialized agents performs complementary, multi-view analysis; and (4) an integrator synthesizes these analyses into a final, interpretable judgment with a natural language explanation. Evaluated on four standard benchmarks, RAM-SD achieves a state-of-the-art Macro-F1 of 77.74%, outperforming the strong GPT-4o+CoC baseline by 7.01 points. Our framework not only sets a new performance benchmark but also provides transparent and interpretable reasoning traces, illuminating the cognitive processes behind sarcasm comprehension.
Abstract:Crowd localization plays a crucial role in visual scene understanding towards predicting each pedestrian location in a crowd, thus being applicable to various downstream tasks. However, existing approaches suffer from significant performance degradation due to discrepancies in head scale distributions (scale shift) between training and testing data, a challenge known as domain generalization (DG). This paper aims to comprehend the nature of scale shift within the context of domain generalization for crowd localization models. To this end, we address four critical questions: (i) How does scale shift influence crowd localization in a DG scenario? (ii) How can we quantify this influence? (iii) What causes this influence? (iv) How to mitigate the influence? Initially, we conduct a systematic examination of how crowd localization performance varies with different levels of scale shift. Then, we establish a benchmark, ScaleBench, and reproduce 20 advanced DG algorithms to quantify the influence. Through extensive experiments, we demonstrate the limitations of existing algorithms and underscore the importance and complexity of scale shift, a topic that remains insufficiently explored. To deepen our understanding, we provide a rigorous theoretical analysis on scale shift. Building on these insights, we further propose an effective algorithm called Causal Feature Decomposition and Anisotropic Processing (Catto) to mitigate the influence of scale shift in DG settings. Later, we also provide extensive analytical experiments, revealing four significant insights for future research. Our results emphasize the importance of this novel and applicable research direction, which we term Scale Shift Domain Generalization.
Abstract:Enhancing the mathematical reasoning of large language models (LLMs) demands high-quality training data, yet conventional methods face critical challenges in scalability, cost, and data reliability. To address these limitations, we propose a novel program-assisted synthesis framework that systematically generates a high-quality mathematical corpus with guaranteed diversity, complexity, and correctness. This framework integrates mathematical knowledge systems and domain-specific tools to create executable programs. These programs are then translated into natural language problem-solution pairs and vetted by a bilateral validation mechanism that verifies solution correctness against program outputs and ensures program-problem consistency. We have generated 12.3 million such problem-solving triples. Experiments demonstrate that models fine-tuned on our data significantly improve their inference capabilities, achieving state-of-the-art performance on several benchmark datasets and showcasing the effectiveness of our synthesis approach.
Abstract:Mixture-of-Experts (MoE) has become a dominant architecture for scaling Large Language Models (LLMs) efficiently by decoupling total parameters from computational cost. However, this decoupling creates a critical challenge: predicting the model capacity of a given MoE configurations (e.g., expert activation ratio and granularity) remains an unresolved problem. To address this gap, we introduce Efficiency Leverage (EL), a metric quantifying the computational advantage of an MoE model over a dense equivalent. We conduct a large-scale empirical study, training over 300 models up to 28B parameters, to systematically investigate the relationship between MoE architectural configurations and EL. Our findings reveal that EL is primarily driven by the expert activation ratio and the total compute budget, both following predictable power laws, while expert granularity acts as a non-linear modulator with a clear optimal range. We integrate these discoveries into a unified scaling law that accurately predicts the EL of an MoE architecture based on its configuration. To validate our derived scaling laws, we designed and trained Ling-mini-beta, a pilot model for Ling-2.0 series with only 0.85B active parameters, alongside a 6.1B dense model for comparison. When trained on an identical 1T high-quality token dataset, Ling-mini-beta matched the performance of the 6.1B dense model while consuming over 7x fewer computational resources, thereby confirming the accuracy of our scaling laws. This work provides a principled and empirically-grounded foundation for the scaling of efficient MoE models.
Abstract:Recent advances in learning rate (LR) scheduling have demonstrated the effectiveness of decay-free approaches that eliminate the traditional decay phase while maintaining competitive performance. Model merging techniques have emerged as particularly promising solutions in this domain. We present Warmup-Stable and Merge (WSM), a general framework that establishes a formal connection between learning rate decay and model merging. WSM provides a unified theoretical foundation for emulating various decay strategies-including cosine decay, linear decay and inverse square root decay-as principled model averaging schemes, while remaining fully compatible with diverse optimization methods. Through extensive experiments, we identify merge duration-the training window for checkpoint aggregation-as the most critical factor influencing model performance, surpassing the importance of both checkpoint interval and merge quantity. Our framework consistently outperforms the widely-adopted Warmup-Stable-Decay (WSD) approach across multiple benchmarks, achieving significant improvements of +3.5% on MATH, +2.9% on HumanEval, and +5.5% on MMLU-Pro. The performance advantages extend to supervised fine-tuning scenarios, highlighting WSM's potential for long-term model refinement.
Abstract:Measuring task relatedness and mitigating negative transfer remain a critical open challenge in Multitask Learning (MTL). This work extends data attribution -- which quantifies the influence of individual training data points on model predictions -- to MTL setting for measuring task relatedness. We propose the MultiTask Influence Function (MTIF), a method that adapts influence functions to MTL models with hard or soft parameter sharing. Compared to conventional task relatedness measurements, MTIF provides a fine-grained, instance-level relatedness measure beyond the entire-task level. This fine-grained relatedness measure enables a data selection strategy to effectively mitigate negative transfer in MTL. Through extensive experiments, we demonstrate that the proposed MTIF efficiently and accurately approximates the performance of models trained on data subsets. Moreover, the data selection strategy enabled by MTIF consistently improves model performance in MTL. Our work establishes a novel connection between data attribution and MTL, offering an efficient and fine-grained solution for measuring task relatedness and enhancing MTL models.
Abstract:Data Shapley is an important tool for data valuation, which quantifies the contribution of individual data points to machine learning models. In practice, group-level data valuation is desirable when data providers contribute data in batch. However, we identify that existing group-level extensions of Data Shapley are vulnerable to shell company attacks, where strategic group splitting can unfairly inflate valuations. We propose Faithful Group Shapley Value (FGSV) that uniquely defends against such attacks. Building on original mathematical insights, we develop a provably fast and accurate approximation algorithm for computing FGSV. Empirical experiments demonstrate that our algorithm significantly outperforms state-of-the-art methods in computational efficiency and approximation accuracy, while ensuring faithful group-level valuation.
Abstract:In recent years, large language models (LLMs) have demonstrated remarkable generalization capabilities across various natural language processing (NLP) tasks. Similarly, graph foundation models (GFMs) have emerged as a promising direction in graph learning, aiming to generalize across diverse datasets through large-scale pre-training. However, unlike language models that rely on explicit token representations, graphs lack a well-defined unit for generalization, making it challenging to design effective pre-training strategies. In this work, we propose REEF, a novel framework that leverages relation tokens as the basic units for GFMs. Inspired by the token vocabulary in LLMs, we construct a relation vocabulary of relation tokens to store relational information within graphs. To accommodate diverse relations, we introduce two hypernetworks that adaptively generate the parameters of aggregators and classifiers in graph neural networks based on relation tokens. In addition, we design another hypernetwork to construct dataset-specific projectors and incorporate a dataset-level feature bias into the initial node representations, enhancing flexibility across different datasets with the same relation. Further, we adopt graph data augmentation and a mixed-dataset pre-training strategy, allowing REEF to capture relational diversity more effectively and exhibit strong generalization capabilities. Extensive experiments show that REEF significantly outperforms existing methods on both pre-training and transfer learning tasks, underscoring its potential as a powerful foundation model for graph-based applications.